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Abstract. Analyses of growth response to resource availability are the basis for inter-
preting whether trophic trade-offs contribute to diversity. If different species respond most
to resources that are limiting at different times, then those differences may trade off with
other trophic or life-history traits that, together, help to maintain diversity. The statistical
models used to infer trophic differences do not accommodate uncertainty in resources and
variability in how individuals use resources. We provide hierarchical models for resource–
growth responses that accommodate stochasticity in parameters and in data, despite the
fact that causes are typically unknown. A complex joint posterior distribution taken over
.102 parameters is readily integrated to provide a comprehensive accounting of uncertainty
in the growth response, together with a small number of hyperparameters that summarize
the population response. An application involving seedling growth response to light avail-
ability shows that large trophic differences among species suggested by traditional models
can be an artifact of the assumption that all individuals respond identically. The hierarchical
analysis indicates broad trophic overlap, with the implication that slow dynamics play a
more important role in preserving diversity than is widely believed.

Key words: coexistence; competition; diversity; growth response; hierarchical Bayes; light;
resource–consumer interactions; species interactions; tree seedlings.

INTRODUCTION

Theory, experiment, and observation suggest that
trade-offs among species involving trophic interac-
tions or life history are the logical and parsimonious
explanation for the often rich diversity of plant com-
munities (Tilman 1988, 1994, Pacala et al. 1996,
Rees et al. 2001). Trophic trade-offs result from pat-
terns of consumption. Examples include different
minimal requirements for different resources (Til-
man 1982), light response curves that shift the ad-
vantage from early- to late-successional species as
canopies close (Bazzaz 1979), and natural enemies
that can promote diversity through preferential pre-
dation on a superior competitor (Paine 1966, Pacala
and Crawley 1992). Life-history trade-offs involve
timing of reproductive effort, and life-history and
trophic trade-offs often interact through allocation
that can affect growth, seed size, fecundity, dispers-
al, and survivorship (Loehle 1988, Tilman 1988,
Clark 1991, Rees et al. 2001).

The apparent agreement of evidence from disparate
approaches is compelling. Theory emphasizes trade-

offs, because models predict the extinction of species
lacking parameter combinations that are sometimes fa-
vored in competition or in potentially rare or transient
environments (MacArthur 1972, May 1973, Tilman
1994). Field data can be found to support this view
(reviews of Connell and Slatyer 1977, Rees et al. 2001).
The alternative, that species are not importantly dif-
ferent and densities therefore ‘‘drift’’ (Hubbell 2001),
does not see much coverage in recent reviews of the
subject. To some, the hypothesis is made more palat-
able by the possibility that speciation might offset the
inevitable extinction losses.

Here we demonstrate that the motivation for trade-
offs is less compelling and finds less support in data
than is generally appreciated. The theoretical demand
for trade-offs and the empirical support are influenced
by assumptions that concern the structure of variability
and the degree of uncertainty. Theoretical models as-
sume that differences among species overwhelm var-
iability among individuals, so much so that individual
differences can be ignored. Individual differences need
not be genetic, and they need not be associated with
measurable environmental variation; any individual
variation violates the assumptions of most ecological
theory and almost all classical statistical models used
to test it.
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For example, growth responses depend on how or-
ganisms integrate variation (Levins 1979). Ecologists
aspire to tightly controlled experiments to insure that
resource treatments match the consumer’s ‘‘definition’’
and the assumptions of statistical models. Such exper-
iments may be feasible at the ecophysiology level and,
rarely, at the population level. Examples include those
used in comparisons of ‘‘A/Ci’’ curves (the effect of
internal CO2 concentration on the rate of carbon assim-
ilation; Pearcy et al. 1981, Sharkey et al. 1986), ‘‘light
response curves’’ (the effect of light intensity on the
photosynthetic rate; Bazzaz 1979, Ellsworth 2000), and
population growth in chemostats (e.g., Tilman 1982).
In such cases, the resource supply, arguably, can be
known with some precision. More commonly, even
tightly controlled experiments are characterized by
wide fluctuations. The impact of variability is poorly
understood for plant responses to light (Pearcy and
Yang 1998), soil moisture (Hinckley et al. 1978, Oren
and Pataki 2001), nutrients (Chapin et al. 1990, Glim-
skar and Ericsson 1999), and CO2 (Ellsworth 2000,
Alistair et al. 2001). Consumer responses to hosts and
prey depend on many interacting variables (Chan and
Godfray 1993, Turchin et al. 1999, 2000, Krebs et al.
2001).

Ignoring sources of stochasticity can result in biased
estimates and inaccurate and overconfident predictions.
It can foster misleading conclusions that species differ
more than they actually do. In view of the fact that
many of the dominant sources of variation will typi-
cally be unknown (and unknowable), how can trophic
relationships be analyzed in a way that leads to useful
inference concerning their role in community dynam-
ics?

Our approach provides insight into the types of
stochasticity that are important for ecological infer-
ence and prediction, and the methods that can be used
to accommodate them. We do not establish here
whether trophic or life-history trade-offs explain di-
versity. Rather, we demonstrate how to determine
differences among species. We focus on a single tro-
phic interaction, seedling growth responses to light,
but the problem and the solution are generalizable.
We do not attempt tight control over variables that
vary widely in nature, although the issues and meth-
ods for addressing them apply to both observational
and experimental data. The hierarchical structure of
our model admits uncertainties in resource avail-
ability and variability in how individuals respond to
it. We then compare results with those obtained using
a traditional frequentist framework. For our example,
we compare Acer rubrum and Liriodendron tulipi-
fera, two species that coexist. This simple example
illustrates the approach and its impact on inference.
We take up a full analysis of a large number of spe-
cies in a separate study (J. Mohan and J. S. Clark,
unpublished manuscript).

THE DATA

We illustrate the hierarchical approach using seed-
ling growth responses to resources. We consider soil
moisture, but devote most attention to light, because it
is commonly analyzed. Growth data derive from annual
measurements of seedling heights on 1-m2 plots from
the Duke Forest, Orange County, North Carolina, USA.
We include several data sets, including one for Acer
rubrum seedlings growing beneath a closed canopy and
larger data sets for Acer rubrum and Liriodendron tu-
lipifera seedlings that are derived from a range of can-
opy conditions. Species co-occur on most plots used
in the hierarchical analysis (parameter estimates are
provided for each plot in the online Supplement). The
growth of seedling i on plot j is defined as the increase
in height, yij, averaged over two years (three censuses).
There are nj seedlings per plot, m total plots, and M 5

nj total seedlings.mSj51

At each location, we measured soil volumetric wa-
ter content (as a percentage) in the upper 15 cm of
soil using a time domain reflectometer, TDR (Tek-
tronix 1502B, Tektronix, Beaverton, Oregon, USA).
Two measurements per plot were obtained every two
weeks from mid-May until early September. Average
values (two replicates by eight measurement dates)
are used.

To estimate understory light, we obtained hemi-
spherical canopy photographs during uniform sky con-
ditions (early morning/late afternoon) in midsummer
at a height of 1.15 m above each seedling plot. Images
were obtained on 400-speed color slide film using a
Nikon FM2 camera with a Sigma 8 mm 1808 fish-eye
lens and leveling tripod. Scanned images were analyzed
using HemiView Canopy Analysis Software (Version
2.1, Delta-T Devices, Cambridge, UK). Photo analysis
involves a user-defined threshold intensity for each
photo that determines whether pixels are classified as
open (sky) or obscured (canopy). The Global Site Fac-
tor (GSF) represents the proportion of full sunlight pen-
etrating the forest canopy. The GSF combines direct
radiation, by calculating the annual solar track, and
diffuse radiation, based on a uniform overcast sky mod-
el. It does not account for backscatter within the can-
opy.

WHY TRADITIONAL METHODS CAN BE MISLEADING

A traditional analysis involves fitting a saturating
function of growth to an estimate of resource vari-
ability. Functional forms typically have parameters that
describe the asymptotic rate (e.g., Amax for photosyn-
thesis), the minimal resource at which growth is pos-
sible (‘‘light compensation point’’ and Tilman’s [1982]
R* are physiological- and population-level examples,
respectively), and a half saturation constant (Holling
1959). The Monod function is standard:
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FIG. 1. The traditional model of uncertainty in a resource–growth analysis and three options (Methods 1–3) involving
different types of stochasticity in growth.

xjm 5 b 1 b (1)j 0 11 2u 1 xj

for resource level xj at location j, having asymptote G
5 b0 1 b1, minimum resource for positive growth x0

5 2b0u/G, and ‘‘half saturation’’ u, the resource level
at which growth is halfway between b0 and b1. For
resources that have an upper bound (e.g., the GSF has
a maximum value of 1), parameter G is not a true as-
ymptote. An alternative parameterization,

x 2 xj 0m 5 G (2)j 1 2u 1 xj

is obtained by making the appropriate substitutions in
Eq. 1. Both Eqs. 1 and 2 are useful. We fit parameters
using Eq. 1 because we can write more efficient al-
gorithms that take advantage of the linear parameters
b0 and b1. Parameters of Eq. 2 are more ‘‘biological,’’
so we interpret the reparameterized Eq. 2.

Here is a classical approach. Let yij be the ith mea-
surement of growth at resource level xj. A simple model
says:

y 5 m 1 « .ij j ij (3)

The first term is the deterministic model. The only un-
certainty we associate with it is that conferred by our
degree of confidence in the estimates of the parameters
b 5 [b0 b1]T and u. All variability is contained in the
second term, which is often assumed to follow a normal
distribution, i.i.d.; N (0, s2); ‘‘i.i.d.’’ indicates ‘‘inde-«ij

pendent and identically distributed. To estimate param-

eters, we write a likelihood for the data under the as-
sumption that the response is mj with error, described
by a fitted parameter s2, yij ; N (mj, s2), the ‘‘traditional
model’’ (Fig. 1). The likelihood

nm j

2 2p(y z x, b, u, s ) 5 N (y z m , s ) (4)P P ij j
j51 i51

is the basis for maximum likelihood (ML) or Bayesian
estimation, the latter requiring a prior for parameters.

Confidence (credible) intervals

Confidence intervals are used for inference on pa-
rameters and for prediction. Within the classical frame-
work, we assume that there exists a true parameter
value. Parameters do not have probability distributions;
they are constants. An X% frequentist confidence in-
terval should contain this true parameter value in X%
of repeated trials. Error propagation translates this con-
cept to the response variable; confidence intervals for
the predicted response are expected to cover the true
response in the specified fraction of repeated trials.
Ecologists can view the ‘‘response’’ in several ways,
depending on their interpretation of scatter.

A fitted model can be used to predict all or part of
Eq. 3, and most analyses predict only the first part. Eq.
3 consists of a deterministic term m, which is usually
associated with the process of interest. All stochasticity
is contained in the second, ‘‘error’’ term, which is as-
sociated with things gone wrong (hence, the name). Of
course, the process m also contains data x, but x is
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assumed to have no estimation error and no stochas-
ticity; once observed (or administered as a treatment),
x is precisely known. Because we are interested in m,
the only stochasticity that impacts inference involves
estimation (parameter uncertainty). Thus, a confidence
interval typically propagates estimation error in b and
u to the estimate of m, while ignoring the stochasticity
associated with «.

Because estimates are subject to asymptotics, so, too,
are estimates of m; the confidence interval on m be-
comes vanishingly small as the sample size increases.
This is true whether the analysis is frequentist or Bayes-
ian (Clark 2003). The disappearing confidence interval
reflects the fact that it is based on fixed entities, namely
parameters and x. Thus, an X% confidence interval on
m does not contain X% of the data. A confidence in-
terval calculated in this way can be viewed as infor-
mation about parameters translated to information
about m.

To construct a prediction envelope on data (y), we
must include the ‘‘error term’’ «, which (in this case)
is conditionally normal and marginally Student’s t. If
scatter is large, then this confidence interval is wide.
This X% confidence interval does include approxi-
mately X% of the observed data. But, of course, data
include the undesirable scatter (error) that obscures the
process of interest m. Ecologists would typically use a
confidence interval on m to assess whether species dif-
fer in their responses to resources. This practice of
ignoring scatter in data (a confidence interval on m
rather than on y) might be justifiable based on the initial
model assumptions: stochasticity is ‘‘error.’’

What if the response itself (m) is stochastic? This
occurs if any part of m is stochastic, including variable
x or variable parameters. In the latter case, ‘‘parame-
ters’’ are not subject to asymptotics. They are more
like variables. Within a classical ML framework, such
considerations are of passing interest, because there
exists no structure that is generalizable to the vast num-
ber of ways in which stochasticity can affect data.

The 1990s saw a revolution in computational statis-
tics resulting in a general framework that accommo-
dated nearly all high-dimensional problems. The Gibbs
sampler, a type of Markov chain Monte Carlo (MCMC
simulation), is based on factorization of a joint (po-
tentially high-dimensional) parameter distribution into
low-dimensional (often univariate) distributions that
can be simulated in a stepwise fashion (Gelfand and
Smith 1990). Parameter variability is accommodated
by adding a stage to the model, rather than by restruc-
turing it. Stochasticity in x is obtained by including a
probability for it, again, without modification of the
basic structure. More meaningful counterparts for the
frequentist confidence interval are available. If m is a
latent (unobserved) process, then a posterior distribu-
tion defines our Bayesian confidence (‘‘credible’’) in-
terval for m (this can be done for each mj). Predictive
distributions for as yet unobserved data y are the basis

for the probability statement that (given model and
data) X% of observations will fall within a prescribed
range. In the sections that follow, we illustrate these
concepts in the context of the current example.

When parameters are not identifiable

Here we develop several aspects of the classical ap-
proach that limit inference. First, this approach pro-
vides no simple way to assimilate different types of
information. Growth relationships have been studied
many times, yet the traditional approach requires that
each new data set be subjected to a new analysis. The
Acer rubrum data set from closed-canopy conditions is
typical (Fig. 2). There is a weak relationship with light,
but insufficient information to identify the asymptote
or half saturation constant; standard algorithms con-
verge to a straight line. Moreover, the positive intercept
does not agree with our expectation that there should
be some ‘‘minimal’’ resource level below which plants
cannot survive. Although seedlings can survive on
stored reserves for extended periods, we do not expect
them to persist in complete darkness.

There are several options. Common next steps in-
clude collecting additional light response data. Addi-
tional growth estimates at high light levels might help
to identify an asymptote. It is possible that the broad
scatter may result from variables that have not yet been
considered. For seedling growth, plant ecologists usu-
ally turn next to soil moisture (Fig. 2, inset). This sec-
ond resource does not explain appreciable variability
in the data, nor does it explain variability that remains
after accounting for the light response. The many pre-
vious studies have no impact on the analysis of this
data set.

Uncertain data

A second limitation of the traditional approach re-
lates to the fact that it ignores most sources of vari-
ability and uncertainty. Indices used to summarize re-
source density do not capture spatial and temporal var-
iability in the same way as a consumer. In the case of
light, the GSF represents how the changing sun angle
throughout the day and year might be perceived by an
understory plant that has variable and uncertain phe-
nology and response times to sunflecks, other resourc-
es, and so on. A canopy photo does not uniquely define
a GSF; two different photos could yield the same GSF,
but there is no guarantee that a plant would perceive
them identically. Different operators can obtain dif-
ferent GSF values from the same photo (the operator
chooses a threshold parameter that determines how pix-
els are classified by the algorithm), and the same op-
erator can obtain different values from photos taken on
different days or at different times of day. The tradi-
tional model (Fig. 1) provides no accommodation for
these ‘‘errors in variables’’ that affect perhaps all stud-
ies of trophic interactions.
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FIG. 2. The relationship between the fraction of light availability (the Global Site Factor, GSF) and height growth for
Acer rubrum seedlings in a closed canopy. The large scatter is typical for such data sets. The nonlinear regression line does
not resolve an asymptote or a half saturation constant, and it suggests the impossible positive intercept. The inset shows the
same data plotted against soil moisture.

Individuals differ

Hierarchical models were developed for responses
that are too variable for the assumptions of classical
models (Carlin and Louis 2000). In the classical
model, we ignore « when making inference on m,
because « adds noise but not insight. Residual var-
iation represented by « has nothing to do with light
response (although the estimate of s2 does depend
on the estimate of m). The error « enters this model
as an addition to the deterministic response m, and
it applies identically to all individuals. In other
words, the classical model assumes that individual
differences in y are independent of light availability
and independent of the light response m.

If individuals vary in their response to light, say mij,
then the response itself is stochastic. Now m has a
mean, and its variance is not asymptotically zero. To
determine whether one species has a different response
from another, we construct credibility intervals that
combine variability in m with the uncertainty in pa-
rameter estimates.

The consequences of inappropriate models

Predictions propagate bias in parameters and they
can imply differences that do not exist. Bias can result
from allocating scatter to « (described by parameter s2)
when it really belongs somewhere else, e.g., in m. The
fit is adjusted to put the scatter where the model per-
mits. Confidence intervals for m based on a classical
model can be narrow (if sample size is large), despite
potentially large variability in the process summarized
by m.

Clearly, we cannot identify all of the variables that
contribute stochasticity, not even all of the important
ones. Nonetheless, we have reason to believe that the
response must involve some minimal requirement
(trees do not grow in total darkness) and a saturating
response (growth cannot increase indefinitely). Two
things are obvious: (1) the resources themselves are
variable and uncertain, and we have not allowed for
their existence, and (2) individuals have a range of
responses to light levels, depending on their own per-
ception of it and on other factors that cannot be fully
known. We require a method that allows for these
sources of stochasticity and that accommodates their
influences on inference and prediction.

ACCOMMODATING THE STOCHASTICITY

Hierarchical structures allow for context (Ver Hoef
1996), including variability among individuals within
populations. Our implementation is Bayesian (Ellison
1996). Parameters have prior distributions that might
be informed by assumptions: the asymptote G should
be finite, the intercept should be negative (b0 , 0 or,
equivalently, x0 . 0), the half saturation should be
positive, and so on. We do not impose strong restric-
tions here (our priors provide flexibility). However, we
note that restrictive priors need be no more subjective
than the model selection itself; if we did not believe
that growth requires at least some resource or that
growth eventually saturates, we would not have chosen
model 1–2 (Eqs. 1 and 2). Incorporating priors no more
subjective than those that motivated model selection
yields parameter estimates for Fig. 1 similar to those
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obtained from more extensive data sets. We do not
pursue that result here, because a Bayesian motivation
more compelling than the capacity to formally incor-
porate external information is the natural structure that
it provides for including stochasticity (Gelman et al.
1995).

We demonstrate a single model structure that admits
reasonable assumptions about stochasticity (Fig. 1). We
consider first variability and uncertainty in resources,
followed by its interaction with variability in growth.
Finally, we incorporate variable responses among in-
dividuals. In each case, we build on that same structure.

Uncertain resources

The observed resource level xj is related to, but not
the same as, the resource level experienced by the or-
ganism. Hereafter, the observed light level is , and(o)xj

the underlying light level experienced by the plant is
xj. We use repeated observations (repeated photos) to
estimate distributions of xj. Because light availability
ranges from complete darkness to full sunlight (GSF
ranges from 0 to 1), we use a Beta density xj ; Beta(aj,
bj) with parameters obtained by moment matching (Ap-
pendix A). The likelihood of the model now includes
both types of ‘‘data’’ (see Fig. 1):

(o)p(x , y z x, . . .)

nm mj

(o)5 p (y z x , . . .) p (x z x , . . .) (5)P P P1 ij j 2 j j
j51 i51 j51

where ellipses (. . .) on the left-hand side denote prior
parameters. The second product series is the likelihood
for the ‘‘error in variables,’’ with the light availability
being a latent variable that can be estimated, but not
directly observed.

We treat the resource–growth relationship (Eq. 1) as
a nonlinear regression, but take advantage of linear
parameters. Define the transformed variable for light
at plot j to be zj 5 xj /(u 1 xj). A design matrix consists
of a column of ones and a column with each zj repeated
nj times. For the first plot, we have

 1 z1 
Z 5 _ _ . 1

n 32  1
1 z1 

The full design matrix is

 Z1 
Z 5 _ . u

M32  
Zm 

Further define parameter vector bT 5 [b0 b1]. Together
with the beta distribution for light observations, we
have the likelihood

nm mj

2p(x, yz . . .) 5 N (y z m , s ) Beta(x z a , b ). (6)PP Pij j j j j
j51 i51 j51

The model includes priors on regression parameters,

N 2(bzb0, Vb), with prior means 5 [b01, b02] and co-Tb0

variance matrix Vb.
We examined three types of stochasticity in growth.

As a baseline, we used the standard assumption of an
unknown distribution of variances that applies every-
where (Fig. 1, Method 1). The conjugate prior for the
residual variance is inverse gamma IG(s2zs1, s2) with
parameters s1 5 s2 5 0.1. The prior covariance matrix
is Vb 5 v0I2, with v0 5 1000, and I2 being the rank 2
identity matrix. The complete model is

2 (o)p(b, u, s , x z x , y, . . .)

nm mj

25 N (y zm s ) Beta(x z a , b ) (likelihood)P P Pij j j j j
j51 i51 j51

23 N (b z b , V )Beta(u z a , b )IG(s z s , s ) (priors).2 0 b u u 1 2

(7)

The first two distributions of Eq. 7 are the likelihood
(Eq. 6). The remaining three distributions are priors
for regression parameters.

There are many parameters. Three come from mj, and
one (s2) describes departures from this model. There
are m unknown resource availabilities, for a total of m
1 4 parameters (m 5 37), i.e., b0, b1, u, x1, . . . , x37,
s2. Standard approximation methods are impractical;
we use a Gibbs sampler (Appendix B).

Growth varies by location

Our second method allows that variances in growth
might differ among plots (Fig. 1, Method 2). Plot-spe-
cific variances are

nj1
2 2s 5 (y 2 m ) .Oj ij jn i51j

The complete model is

2 2 (o)p(b, u, s , . . . , s , x z x , y, . . .)1 m

nm mj

25 N (y z m , s ) Beta(x z a , b ) (likelihood)P P Pij j j j j j
j51 i51 j51

m
23 N (b z b , V )Beta(u z a , b ) IG(s z s , s ) (priors).P2 0 b u u j 1 2

j51

(8)

There is a prior for each variance. The Gibbs sampler
for this model is described in Appendix B.

The response varies among individuals

Our third method accommodates individual differ-
ences in light response in the form of a parameter set
that describes the response for the ith individual on the
jth plot, mij. Individual parameters are linked to the full
population by distributions, defined by hyperparame-
ters. These are ‘‘random effects’’ at the individual lev-
el. The full model,
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2 (o)p(b, b , V , u, s , x z x , y, . . .)0 b

nm mj

25 N (y z m , s ) Beta(x z a , b )P P Pij ij j j j
j51 i51 j51

(likelihood)

nm j

23 N (b z b , V )Beta(u z a , b )IG(s z s , s )PP 2 ij 0 b u u 1 2
j51 i51

(priors)

21 213 N (b z h, D)W (V z (wR) , w) (hyperpriors)2 0 2 b

(9)

has a vector of growth parameters for each individual
bij 5 [bij0, bij1]T, which is drawn from the distribution
N 2(bijzb0 Vb). We do not have plot-specific growth var-
iances, because we have allowed for variance at the
individual level. The parameters have hyperprior den-
sity N 2(b0zh, D) and the Wishart W() parameter co-
variance matrix, a multivariate generalization of the
gamma distribution. The hyperprior for regression pa-
rameters is made noninformative by applying small pri-
or precision D21. The prior covariance matrix for hy-
perparameters D 5 Diag(800, 1000) is relatively weak
(Appendix B). The Wishart hyperparameters consist of
weight w ‘‘degrees of freedom’’ and matrix R. A non-
informative prior has small w (but not less than the
dimension of R, i.e., 2) and R K Vb. R is roughly the
prior mean of Vb. We use Carlin and Louis’ (2000) rule
of thumb R 5 Diag((r1/8)2(r2/8)2), where r1 5 20 and
r2 5 80 are plausible parameter ranges for bij, and
w 5 M/20. Results here use prior parameter values for
h 5 [230, 100]T.

Priors based on previous studies could inform our
estimates of regression parameters bij (through h and
D) or their covariances Vb (through w and R). Prior
weight could be based on sample sizes used in previous
studies and on the degree to which prior evidence is
believed to inform this analysis. We defer further in-
terpretation to the Results, because they illustrate the
contributions of these different elements. The Gibbs
sampler is described in Appendix B.

As a rough model selection guide, we used the De-
viance Information Criterion (DIC), a generalization of
the Bayesian Information Criterion (BIC). Both are
based on the deviance statistic, D(f) 5 22lnL for like-
lihood L and parameter vector f, with a penalty for
model complexity. For BIC, this penalty is the number
of parameters, ptot, times lnM, where M is the total
number of seedlings across all plots. For hierarchical
models ptot does not have the usual definition. Model
complexity (effective number of parameters) is taken
as pe 5 2 D( ), where is the expectedD(f) f D(f)
deviance over the posterior distribution of parameter
vector f (the deviance evaluated over the full MCMC
(Markov chain Monte Carlo) run), and D( ) is the de-f
viance evaluated at the posterior mean parameter vec-

tor. Then DIC 5 1 pe 5 2 2 D( ) (CarlinD(f) D(f) f
and Louis 2000), with 95% CIs for parameter and mod-
el.

Because of large variability, we employ two con-
straints on the hierarchical model in addition to those
for other models. The hierarchical model allows for
individual parameter estimates of bij0 . 0 and bij1 ,
1. This will be the case when individual variation is
large. We allow for such estimates in the MCMC run,
but exclude them from posteriors, which is equivalent
to use of the equivalent prior restriction, truncated at
zero (e.g., Gelman et al. 1995). We further constrain u
to values close to the MLE for the entire population,
using prior Beta values of au 5 100 and bu 5 au (1/uML

1 1). Otherwise, u can be slow to converge, sometimes
requiring .105 MCMC steps. Note that this prior con-
straint emphasizes the contribution of the likelihood.
We would not use this approach if our focus were in-
ference on u; our focus is on m and y. Our prior has
no discernable impact on predictions of m and y, be-
cause other parameters are flexible to values of u. More-
over, by using different priors for each species (each
centered on the ML estimate), we avoid any tendency
for identical priors to cause species to appear more
similar than they actually do. We use exclusively proper
priors to insure identifiability (Gelfand and Sahu 1999).

The three approaches are modifications of several in
the literature. Linear regression with known covariance
is discussed by Carlin and Louis (2000). Our hierar-
chical structure is similar to that of Gelfand et al.
(1990), who used a linear model to examine multiple
observations per individual. Our ‘‘linearization’’ is rec-
ommended when efficiency is an issue (as it is here).
Gamerman (1997) mentions its application in a Bayes-
ian context. Gelman et al. (1995) and Carlin and Louis
(2000) discuss the Wishart as a conjugate for the re-
gression covariance matrix.

RESULTS

The traditional model

The classical method results in low parameter un-
certainties (parameter error distributions are in Fig. 3a),
in large part due to the fact that standard errors are
proportional to M2½. Error propagation to the response
m (dashed lines in Fig. 3a) can give a misleading im-
pression, in that m is estimated with great confidence,
a result of assumptions that light is known precisely
and that all individuals have this identical response to
light. Tight confidence intervals on m belie the true
scatter; far more than 95% of the data fall outside the
95% propagated parameter error. The distribution of
residual variation « accounts for the scatter (right side
of Fig. 3a). Regardless of cause, the analysis assigns
it to «, because we have provided no other place for
it. Of course, we could integrate the stochasticity as-
sociated with « (and uncertainty in the estimate s2),
but this predictive interval for data, with negative val-
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FIG. 3. (a) Maximum likelihood (Traditional model in Fig. 1) fit for the Liriodendron data set, showing parameter error
distributions and the distribution of residuals « (with variance determined by the MLE for s2). Dashed lines show 95%
confidence intervals for parameters and the model m, which is propagated from parameter error distributions using a
nonparametric bootstrap. Part (b) shows the additional effect of error represented by the term « (outer predictive intervals).
For the kth bootstrap resample, we estimate a growth rate as a random draw from N (mjk, ). The marginal distribution is2sk

Student’s t due to the sampling distribution of s2.

ues at the low light levels where light limitation matters
most (Fig. 3b), would be of questionable use. More-
over, the assumption that scatter is ‘‘error’’ (the impetus
for this classical model) is used to justify ignoring it
and, hence, focus on the CI for m.

Uncertain resources

Acknowledging uncertainty in light affects the esti-
mate of the response m by structuring the stochasticity
in a different way. Each plot has its own distribution of
light levels (Fig. 4). Each is conditionally informed (1)
by the variances in light measurements, described by the
sampling distribution xj z ; Beta(aj, bj) and (2) by the(o)xj

probability that we would observe the sample of growth
rates given the observed light level, yijzxj ; N (mj, s2).
The m densities of light (one for each plot) in Fig. 4
integrate contributions from both. Admitting that light
is uncertain has impact on parameter estimates that con-
trol the fitted response at low light (u) and a small effect

on the asymptote G (Appendix C). The credible interval
shown for m is provided for comparison with the 95%
CI obtained from the frequentist approach in Fig. 3a. It
integrates uncertainty in regression parameters and re-
source variability and uncertainty. The error term is not
included in this CI, so it is not a prediction of y. The
contribution of « is shown separately on the right side
of the figure. The differences from traditional ML are
not due to prior effects, because priors used for Fig. 4
are swamped by large M.

Fig. 4 indicates that uncertain light cannot account
for a large fraction of the structure in these data. Re-
sidual uncertainty (described by «) is only slightly low-
er for Method 1 than for the traditional ML approach
(Appendix C), because no amount of light uncertainty
can bring the high growth rates in line with a model
m that would describe all of the data well. The large
scatter in growth rates could result from factors that
vary from plot to plot or from differences among in-
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FIG. 4. Method 1 analysis (see Fig. 1) that accommodates variability in light. Bayesian posteriors are shown for all
parameters, together with the predictive distribution for the model m. Dashed lines are 95% credible intervals. Those for the
response m were constructed from quantiles drawn for each Gibbs step. The term « is shown, rather than the parameter s2

itself, to provide a sense of the variation not ‘‘explained’’ by the model.

dividuals in how they respond to light. The next two
methods address these possibilities.

Growth uncertainty varies by location

Acknowledgement of plot-to-plot differences in re-
sponse provides a more realistic classification of un-
certainty, but not in the best way. The variances in
growth rates change from one plot to the next (right
side of Fig. 5) in a way that is not captured well by a
single residual variance s2 (Fig. 4). When light is below
the proportion 0.2, the distributions of light levels are
tighter in Fig. 5 than they are in Fig. 4, because growth
variances on these plots are low. The low variances on
observations at low light cause them to dominate the
regression, resulting in large estimates of u and a low
asymptote G. To remedy this, we might choose a dif-
ferent parametric form (a function m with more param-
eters) or change the assumption about how variability
operates (next section). This collection of distributions
based on unknown factors captures the data structure
in a way that seems more ‘‘realistic’’ than previous
methods, to the extent that plot-to-plot differences are
large, and previous methods would not allow it. The
undue weight that it places on subsets of the data may

be undesirable, and the collection of empirical variance
estimates is unenlightening.

The response varies among individuals

The model has not yet ‘‘captured’’ the structure of
this relationship in the most useful form. The error term
accommodates stochasticity that is unrelated to m. In
the present context, this might typically be associated
with measurement errors. Although growth data show
broad scatter, height can, in most cases, be measured
with relatively small error. Variability results from die-
back and browse, but these effects can often be rec-
ognized. Poor meter-stick technique should not be the
cause of order-of-magnitude error. In other words, the
scatter contains a small contribution from measurement
error.

Light uncertainty and variability can explain some,
but not most, of this variability. If uncertain light ac-
counts for the scatter, then data points well above the
fitted model m experience true light levels that are much
higher than those that we estimated from canopy photos
(x k x(o)). However, even if we allowed the possibility
that a plant at a measured light level of x(o) 5 0.1 might,
in fact, be receiving full sunlight (x near 1), we could
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FIG. 5. Method 2 analysis (see Fig. 1) with plot-to-plot variability in growth (right-hand side). Bayesian posteriors are
shown, together with the predictive distribution for the model. Symbols follow Fig. 4.

not accommodate much of the scatter in these data sets.
There may be differences among individuals, related
to inherent or local conditions, that cause each to re-
spond to light somewhat differently. Although we can-
not know all of these potential influences, we can allow
for the variability that they confer.

The hierarchical model allows for this possibility,
and it predicts that the individual differences are large.
We have not changed our view that there is a rela-
tionship, like Eq. 2, that applies to all individuals in
the population. By contrast, we also do not assume
that they are completely independent. Each has its
own parameter estimates (‘‘individual’’ G and x0 pos-
teriors in Fig. 6). The hierarchical model provides a
summary of the population in the form of estimated
hyperparameters. The structure of variability and un-
certainty here is more plausible (and useful) than in
the previous cases, because it is classified in the way
in which ecologists believe that variability operates.

We have retained the assumption that true light levels
are unknown. The parameters for any given individual
can be viewed as a combination of the contributions
of the data for that individual (light and growth),
which are weighted by the precision s22, and that for
the population as a whole. The latter is the hyper-
parameter vector b0, which is weighted by the inverse
of the parameter covariance Vb. There is thus a ‘‘bal-
ance’’ between contributions from the individual and
the population, maintained by the degree to which
each contributes to the overall fit. The population pro-
vides the ‘‘glue’’ that precludes the overfitting of in-
dependent parameters for every individual. The 95%
credible interval for m (dashed line in Fig. 6) contains
;95% of the data points, because the residual vari-
ation is small (right side of Fig. 6). This credible in-
terval for the population response is consistent with
our view that individuals do not have negative growth
rates (e.g., Fig. 3b), although they can lose height for
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FIG. 6. The hierachical analysis (Method 3 in Fig. 1), which assumes that each individual may respond differently to
light (‘‘individual’’ parameters), with individual distributions summarized by hyperparameters. Bayesian posteriors are shown
for all parameters except s2, which is represented instead by the distribution for «, together with the predictive distribution
for the model. The two hierarchical parameters are shown as individual posteriors, marginalized over all individuals, and
hyperparameters.

reasons that would typically be unrelated to light. A
low DIC indicates that the hierarchical model can ex-
plain much of the data structure; despite the large
number of parameters, the number of ‘‘effective’’ pa-
rameters is relatively small.

Comparing trophic responses

A comparison of two species shows that a more re-
alistic structure blurs species differences at all light
levels. A classical fit predicts large differences in m

between Liriodendron and Acer rubrum (Fig. 7b). Sam-
ple sizes are large and, thus, confidence intervals are
narrow, so narrow that each m estimate assigns essen-
tially zero probability to the other response. The models
for the two species are statistically different.

The resource and individual variability result in
broadly overlapping confidence intervals (Fig. 7a). Al-
though the classical model predicts distinct differences,
a fuller accounting of stochasticity predicts broad over-
lap. A full accounting of the uncertainty in the classical
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FIG. 7. A comparison of (a) hierarchical and (b) classical models for two species. Data are for Acer rubrum (data for
Liriodendron are shown in previous figures). The figure shows 95% confidence intervals as they are typically interpreted.
For the classical model, they are for the species-specific response m. For the hierarchical Bayesian model, they are credible
intervals on the population response.

fit (i.e., propagating the effect of s2) would also pro-
duce broad overlap (e.g., Fig. 3b), provided we were
willing to accept the scatter as something other than
‘‘error.’’ However, if we believed this, we could not
justify the classical assumption that the scatter is
‘‘noise.’’

DISCUSSION

Inference from analyses such as Fig. 3 are used to
identify species differences that might explain diver-
sity. The traditional model assumes that resources are
known precisely and that individuals respond identi-
cally. Species interactions parameterized in this way

challenge ecologists to identify trade-offs that permit
coexistence. If the interaction depends on light inter-
action alone, Fig. 7b does not admit coexistence (e.g.,
Tilman 1982). When embedded in a dynamic model,
Fig. 7b predicts rapid extinction of the poorer com-
petitor. The fact that Acer rubrum is not extinct de-
mands a trade-off, some combination of circumstances
within which Acer rubrum can dominate (and thus,
persist). The search for such trade-offs is a tradition in
ecology. Our analysis from one site does not mean that
this relationship will apply everywhere. The important
lesson derives from the impact of admitting stochas-
ticity in a realistic way.
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Our approach is consistent with the way in which
ecologists view sources of stochasticity, individually
and in combination. Light is among the most important
controls on plant growth. Light is highly variable, as
are responses (consumption rates). Others (Pacala et
al. 1994, Kobe 1999, Finzi and Canham 2000) find
comparable levels of variability in growth responses to
light. The hierarchical model is consistent with the
view that individuals differ in their response, and that
resources cannot be precisely known. It describes these
contributions in ways that are readily applied to pre-
dictions of trophic interactions and to community dy-
namics. Parameters describe individual responses, but
responses are interdependent and linked by hyperpar-
ameters that summarize the population. Confidence in-
tervals are consistent with data: a X% CI bounds ap-
proximately X% of the data (Fig. 6). Because we begin
with the assumption that these differences exist, we do
not focus on a deterministic species-specific response
that can misrepresent the degree of overlap (Fig. 7).

A sensible accounting of uncertainties need not mo-
tivate the search for trade-offs needed to ‘‘explain’’
coexistence. Trophic relationships are variable and
broadly overlapping. Confidence envelopes do not
predict large differences among species (Fig. 7a).
Broad overlap does not mean that there are no bio-
logically important differences. A number of recent
reviews emphasize the potential importance of trade-
offs, and there is a legacy of research to indicate that
such trade-offs can promote coexistence. For exam-
ple, the traditional classification of traits for early-
and late-successional tree species undoubtedly con-
tributes to patterns of diversity (e.g., Rees et al. 2001).
This analysis, however, demonstrates that outcomes
of trophic interactions will be highly variable. The
rapid extinction implied by traditional data modeling
(Fig. 7b) is not implied by the model that admits var-
iability in a plausible way (Fig. 7a). Instead of a de-
terministic winner, either species may have the ad-
vantage at any light level. Regardless of whether
‘‘trade-offs’’ exist, their contribution is less effica-
cious than advocated by most current theory and as
implied by classical data modeling.

Alternative structures

This analysis demonstrates a strategy for computa-
tional statistics that admits a broad range of assump-
tions within a common structure (Gelfand and Smith
1990). This example is not exhaustive. We explored
four sets of assumptions by simply extending the orig-
inal model (Fig. 1). The specific forms that we explored
were motivated by insight concerning how variability
might operate. Others can disagree with our specific
assumptions, but it would be difficult to argue that they
are inferior to those implicit to a classical approach.
In competition with a model lacking individual vari-
ability, results indicate that individual differences mat-
ter. Obviously, no model is ‘‘correct,’’ and this flexible

framework serves to emphasize the importance of in-
sight. The comparison of assumptions that can be ex-
plored within this framework further serves to empha-
size the inadequacy of a classical approach when sto-
chasticity can enter a model in many ways. Classical
methods will continue to be valuable, provided their
assumptions are explicit.

We do not explore all options, but we mention several
that could be pursued further. A few extensions include
different classifications of error structures and more de-
tailed specification of covariate effects. For example, we
used two hierarchical regression parameters, but as-
sumed a single half saturation constant for the popula-
tion. This was a practical choice, because (1) this ap-
proach seemed sufficient to capture the random effects
of individuals, and (2) u is the ‘‘sticky’’ parameter that
is slow to converge. M different values of ui would be
substantially slower. Because we are interested in spe-
cies differences, rather than parameter inference, the re-
gression covariances that result from this assumption are
not of great concern. Nonetheless, this is an option that
could be pursued.

The approach readily admits alternative or further
subclassifications of variability, e.g., among subpop-
ulations that might occupy different environmental set-
tings. In principle, random effects on growth might be
explored at a range of levels.

By omitting priors on the parameters for light avail-
ability, we did not admit as much variability as we
might. We reasoned that the variability estimated from
repeated photos was already large, and that the nature
of the scatter in the data did not suggest that extreme
variability in light was the cause. Nonetheless, this op-
tion is easily implemented and would not dramatically
slow convergence.

The process model m can be further embellished to
admit declines in growth rates that might occur at high
light and to accommodate effects of covariates. Given
the inevitable trade-off between detailed process and a
rich error structure, including more covariates should
permit a simplified treatment of error.

CONCLUSIONS

Our results do not imply that all species are trophi-
cally identical or that trophic trade-offs do not exist.
There are many potential trade-offs that can affect in-
teractions, even between the two species that we an-
alyze here. Rather, these results demonstrate that tra-
ditional methods find differences where they are too
weak to matter. Proper treatment of uncertainty and
variability has a large impact on ecological inference
and prediction. A hierarchical Bayesian framework
readily accommodates resource levels that cannot be
precisely known (organisms do not assess them in the
same way as ecologists), and responses that vary
among individuals. Failing to allow for these uncer-
tainties results in biased estimates and inaccurate con-
fidence envelopes.
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Finally, general ecological principles derive from
simple process models. Simplicity is justified by the
potential for broad application. Models are extended
to specific situations by adding ‘‘effects’’ to produce
more complex process models. Most of the effects
cannot be parameterized. Complex models can fail,
in part, because they demand more information than
data can provide. Application typically involves
guesswork, and probability statements are rarely
plausible.

Rich ‘‘error’’ structure can step in where complex
process models fail or are undesirable. Modern statis-
tical computation provides a way forward with a basic
structure that allows application of simple models with-
in realistic context. Hierarchical approaches sidestep
deterministic complexity by admitting variability and
uncertainty.
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APPENDIX A

Light parameter equations are available in ESA’s Electronic Data Archive: Ecological Archives E084-001-A1.

APPENDIX B

Algorithms for Gibbs sampling for a growth model are available in ESA’s Electronic Data Archive: Ecological Archives
E084-001-A2.

APPENDIX C

Tables of parameter estimates, posterior means, standard errors, and 95% credible intervals for light availability and
individual plants are available in ESA’s Electronic Data Archive: Ecological Archives E084-001-A3.

SUPPLEMENT
A supplement containing data files is available in ESA’s Electronic Data Archive: Ecological Archives E084-001-S1.


